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Vacuum Laser Acceleration 

Phillip Sprangle, Eric Esarey, Jonathan Krall, and Antonio Ting 

Beam Physics Branch 
Plasma Physics Division 

The purpose of this communication is to comment on and discuss laser 

acceleration of electrons in vacuum.  In particular, we will:  i) critique 

the recent paper by C. M. Haaland , titled "Laser Electron Acceleration in 

Vacuum," ii) discuss some general features and characteristics of laser 

acceleration in vacuum, and iii) propose a vacuum laser acceleration 

concept called the "vacuum beat wave accelerator". 

In Ref. 1 a vacuum laser acceleration configuration was proposed and 

analyzed. In this scheme a pair of linearly-polarized laser beams with 

Gaussian profiles, having the same frequency, are focused and intersected 

in vacuum, see Fig. 1. Here, the first laser propagates along the z..-axis 

and the second laser propagates along the z„-axis, where the z--axis and 

the z2-axis are rotated by the angles of 9 and -0, respectively, with 

respect to the z-axis. The phases of the lasers are such that the 

transverse electric fields cancel along the axis while the axial fields 

add. Properly phased electrons injected along the z-axis can be trapped 

and accelerated by the net axial component of the laser field. The 

analysis of this configuration contained in Ref. 1 is flawed for a number 

of reasons, e.g., the vacuum fields are physically unrealizable. Reference 

1 arrives at the incorrect conclusion that "the electron will acquire a net 

energy gain in this scheme when the laser-electron interaction is 

integrated along the z-axis from minus to plus infinity". We find, on the 

other hand, that the net energy gain vanishes over an infinite interaction 
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2-5 
region, which is in agreement with the Lawson-Woodward   acceleration 

theorem. 

The axial electric field associated with the intersecting laser beams 

can be calculated by writing the laser fields in the (x,y,z) coordinate 

frame. In the (x^y^z^ coordinate frame, where x1 = xcosG - zsinG, y1 = 

y, and z1 = zcosG + xsinG, the electric field of the first laser beam 

consists of a transverse and axial component, E^x^y^z^ t) = Ex]£xl + 

E -e - where e , and e « are unit vectors. In the paraxial approximation 
zl zl      xl    zl 

(X « w ), the electric field components of a Gaussian laser beam are given 

by 

Exl - Eol wf exp(-r2/vJ)cosV (la) 

Ezl = 2EQ1 -ij exp(-rj/wj) [sin^ - (z1/zR)cos^1J,     (lb) 

2 1/2 
where EQ1 is constant, Wj = WQ[1 + (Z^ZR) 1   >s the laser sPot slze» w0 

2 
is the minimum spot size (waist), zR = nvQ/X is the Rayleigh length, X = 

2nc/w is the wavelength, « = ck is the frequency, k is the wavenumber, r1 = 

(xj + yj)1/2,   ♦ = kzx - »t +  4>r   *x = r^(z1/zR)/w1 - tan"  (Zj/z^  +  <J>Q,   and 

f is a constant. The longitudinal field component in Eq. (lb) is 

necessary for the field to be divergence free, i.e., a physically 

realizable vacuum electromagnetic field. This important field component, 

among other things, is not considered in Ref. 1. The field components for 

the second laser beam are given by Eqs. (la) and (lb) with the subscript 1 

replaced by 2. The total transverse, Ex, and axial, Ez, components of the 

two laser fields in the (x,y,z) coordinate frame are Ex(x,y,z,t) = (Exl + 

Ex2)cos6 + (Ezl - Ez2)sin9, and Ez(x,y,z,t) = - (Exl - Ex2)sin9 + (Ezl + 



E „)cos6. In order to have only an axial field component along the z-axis 

(x = y = 0), we set En1 = EQ and EQ2 = -EQ, such that Exl = - Ex2 and Ezl ol   o     o2 

E „. This gives E (0,0,z,t) = 0 and 

Ez(0,0,z,t) = 
-2E sine o 

,-  ~2  2-,3/2 (1 + z cos 6) 
exp 

-(z/9d)
2sin2e,> 

1  ~2  2Q 1 + z cos 9 J 

:lcos^ + zcosGsiniH 

-2E sine o  
-2  2 1 + z cos e 

exp 
'-(z7ed)

2sinV 

~2  2 L 1 + z cos 6 ) 
cos«^,   (2a) 

where 

3  2 
* = kz z*cos6 - «t + e"2 <2cose> tan e _ tan-l(zCOse) + +  (2b) 

(1 + z cos 6) 

♦f = * - tan (zcos6), z = z/zR and 6, = 
W
0
/Z
R 

is tne diffraction angle. 

For small intersecting angles, 6 « 1, the axial accelerating field in Eq. 

(2a), as seen by an electron traveling with velocity v = c, is 

-2E e „     o  E = ^ exp 
1 + z 

~2     2 /-zz(e/ed) ^ 

1 + z 
cos*t, (3a) 

where 

*t ~ "(Yzed)2^ " <e/ed>2^/(1 + z 2> " 2tan 1 z + +0» (3b) 

the accelerating field in Eq. (3a) is greater than c and therefore slips 

ahead of the electron.  From Eq. (3b) we find that, near the focal point,     Q 
.in  

Izl < zD, the distance required for the electron to phase slip by n  is 

given by 

n 
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2\ 

,   2. 2' 
1 + Yc/Yz 

(4) 

where Y = (62 + 2e2)~1/2 defines a critical energy. In the low energy 

limit, Y « Y , the slippage distance, zg = y\\ « zR, is much less than a 

Rayleigh length, while in the high energy limit, YZ » Yc»' the slippage 

distance, z = X/(62 + 292), can be comparable to a Rayleigh length. The 
S o 

critical energy V = (Y - l)mc for the parameters in Ref. 1 is W£ = 4 MeV 

and, therefore, in what follows we will consider only the high energy 

limit. The accelerating field given by Eq. (3) is shown in Fig. 2 for the 

same parameters used in Fig. 2 of Ref. 1, i.e., X = 1 um, wQ/X = 4.5 and 

w /X = 8.1. The axial electric field on axis can be written as the 
o 

gradient of an effective potential, Ez = " 
Z
R 3U/3Z, where 

U(z") = 
4E  c 
ke exp 

2-2 (9/6d) z
z" 

l + z~2 
sin ♦o- 

(e/ed)
2z 

1 + z 
(5) 

The potential in Eq. (5) is shown in Fig. 3. The change in energy of an 

electron traveling along the z-axis with velocity = c, injected at point z] 

and extracted at zp is AV^Zp) = |e|[U(zF) - IKZj)].  For the special 

case of zp = z , zT = -z , the energy change is 

AW = 
8lelEo 
ke~ cosVin 

<e/ed)
2zo 

l + z~2 o 

exp 
(e/e/z"2" 

1 + z 
(6) 

where z = z /zR. The coefficient in Eq. (6) can be written as 8|e|Eo/(kG) 
o 

a/2, = 88P1/2eH/6 MeV, where P is the laser power in TV. Note that as ZQ -» », 

AW -> 0, which is a special case of the Lawson-Woodward theorem. A finite 

energy gain can only occur over a finite interaction range. The maximum 

energy gain occurs when 2z is equal to a slippage distance, which is the 



distance over which -E > 0, i.e., the vidth of the central peak in Fig. 2. 

For the parameters of Ref. 1, X = 1 ym 8 = 0.1 rad, and WQ/X = 4.5 (8.1), 

we find an optimal interaction distance of 2zQ = zg = 56 ym (79 ym), zR = 

64 ym (210 ym), and 6, = 71 mrad (39 mrad).  For a finite interaction 

1/2 
distance, 2z = z , we find that AV[MeV] = 30 P  [TV] for w /X = 4.5 and os u 

AV[MeV] - 26 P1/2[TWJ for w /X = 8.1.  Hence, for P = 20 TV, AV « 130 MeV 

(110 MeV) for w /X - 4.5 (8.1), which implies an average acceleration 

gradient e<E > = AV/zg of <Ez> =2.3 TV/m (1.4 TV/m). 

In Ref. 1 the transformation of the fields and coordinates from the 

rotated frames to the accelerated frame is in error. The fields in Ref. 1 

are not physically realizable, i.e., V-E *  0,  because the field components 

E , and E „ are neglected.  In Ref. 1 the electron-laser slippage distance 
Zl       7.1 

(acceleration distance) is essentially independent of the laser spot size 

as shown in Fig. 2 of Ref. 1. This is incorrect. Our analysis shows that 

the slippage distance decreases with decreasing spot size resulting in 

substantially less energy gain than is indicated in Fig. 3 of Ref. 1. The 

fact that the net electron energy change vanishes for infinite interaction 

distances in the crossed beam configuration is consistent with the Lawson- 

2-5 
Voodward (L-V) theorem. 

The L-V theorem   states that the net energy gain of a relativistic 

electron interacting with an electromagnetic field in vacuum is zero. The 

theorem assumes:  (i) the laser field is in vacuum with no walls or 

boundaries present, (ii) the electron is highly relativistic (v = c) along 

the acceleration path, (iii) no static electric or magnetic fields are 

present, (iv) particle radiative effects are neglected, (v) the region of 

interaction is infinite, and (vi) ponderomotive effects (nonlinear forces, 

e.g., the v x B force) are neglected.  Under the above assumptions, the 



lack of an energy gain can be shown in a straightforward way by considering 

the general solution to the vacuum wave equation. In order to achieve a 

nonzero energy gain in vacuum, one or more of the above assumptions must be 

violated. For example, a finite acceleration region, typically on the 

order of a few zD, can be achieved using various optical configurations. R 

An important issue in these configurations is the laser intensity damage 

threshold of optical components. Alternatively, one can rely on nonlinear 

forces to produce the desired acceleration, such as the ponderomotive 

force. The use of ponderomotive forces can result in substantial energy 

gains even for an infinite interaction region. As an example of an 

accelerator based on the nonlinear ponderomotive force we propose the 

vacuum beat wave accelerator (VBWA). 

In the VBWA two laser beams of different frequencies are co-propagated 

in the presence of an injected electron beam, see Fig. 4. Properly phased 

electrons, traveling essentially along the same axis as the two laser 

beams, experience an axial acceleration from the beat term in the v x B 

force.  Two laser beams of different frequency can be obtained, for 

example, by splitting a single laser pulse, frequency doubling one of the 

pulses and recombining the pulses. The acceleration mechanism in the VBWA 

7-13 
is similar to that of the inverse free electron laser (IFEL).     In 

effect, the wiggler field in the IFEL is replaced by one of the lasers in 

the VBWA. 

In the following analysis of the VBWA, the spot sizes of the laser 

beams are taken to be large compared to their wavelength and the lasers are 

assumed to be circularly polarized. The total laser field, represented by 

the vector potential, is A(z,r,t) = A^z.r.t) + A2(z,r,t) where Aj and A2 

represent laser 1 and 2 respectively and are given by 



A.(z,r,t) = Ao. ^-2±j exp(-r2/w2(z))[cos(*.)ex + sin(*.)ey],(7) 

where the subscript i = 1,2 denotes the laser beam, v^z) = wQi(l + 

(z/zR.)2)1/2, zR. = irwo?/X., X. = 2nc/«., w. = ck., *. = k.z - w.t + +., 

2        2—1 
<j). = r (z/zR.)/w7(z) - tan (z/zRi) + <f>oi, and 4>oi is constant.  In the 

one-dimensional limit (X./w . « 1), the axial component of the nonlinear 

ponderomotive force, F , is given by -|e|(v x B/c) .  In this limit, 

conservation of transverse canonical momentum implies v. = ca/y, where 

a = a- + a,, a. 9 = |elAi «j/mc are tne normalized vector potentials and Y 
2 

is the electron relativistic mass factor.  Hence, |e|(v x B/c) = (mc /y) 

2 
[a x (V x a)]  = (mc /2Y)3(a*a)/3z, and the axial component of the 

pondermotive force is 

*z- =!rk <s-s)- <•> 

Substituting Eq. (7) into Eq. (8) we find that 

Fz = aolao2iBt T" Sin(*2 " V' (9) 

where w„ - w1 = A« = cAk > 0 and nonresonant (slowly varying) terms 

2 
proportional to a . have been neglected. The effective accelerating 

gradient is inversely proportional to the electron energy.  The phase 

velocity of the accelerating field on axis and near the focus of the two 

laser beams, i.e., r = 0 and |z| < zR^, z^, is 

 Awe;  
ph ~ Aw + c/zR. - c/zR2' 

= c 1 " <* " zRl/zR2)/(AkzRl> 
(10) 



which is less than c for zR2 > zR1 and can be controlled by appropriately 

choosing the laser spot sizes and, in addition, by including higher order 

diffractive effects. The acceleration distance is limited not by the 

slippage distance but by the diffraction range, i.e., Rayleigh length. For 

a properly phased electron, the maximum rate of change of energy is 

|| = aolao2Akmc
2/(l + V/mc2), (11) 

2 
where we have set sin(i|»2 - ^) = 1, and W = mc (Y - 1) is the electron 

energy. For the purposes of illustration we set a = aQ^ = a^, zR « zR1 = 

zD„ and take the acceleration range to be two Rayleigh lengths, i.e., from 

z = -zR to +zR. Equation (11) yields 

WF[MeV] = [v2[MeV] + ^(X^ - DP^TV]]172.        (12) 

where V„ (Wj) is the final (initial) electron energy and we assumed Wj » 

mc .  Since the L-W theorem does not apply to the VBWA mechanism, it can be 

shown that Eq. (12) is approximately correct even for infinite interaction 

distances. For circularly polarized radiation, the laser parameters, aQ., 
2 

X. and w ., are related to the laser power by PjITW] = 0.043(aoiwQi/Xi) . 

When the energy change is much greater than the initial energy we obtain 

Wp[MeV] = 22(^X2 - 1)1/2P1[TW]
1/2. As an illustration, for Xj = 2^ = 1 

um and P- = 20 TV, the energy gain is 100 MeV. The energy gain in the VBWA 

can exceed that in the standard laser wakefield accelerator (LWFA) 

configuration,  which assumes a single laser pulse undergoing vacuum 

diffraction. 

We have shown that the concept of using two crossed laser beams in 

vacuum to accelerate electrons, as recently discussed by Haaland, yields no 

net energy gain for highly relativistic electrons and infinite interaction 



distances.  Reference 1 arrives at incorrect conclusions because important 

terms contributing to the magnitude and phase of the accelerating electric 

field were neglected.  A relativistic electron can obtain a net energy gain 

with this configuration if the interaction distance is limited to a few 

Rayleigh lengths, for example, by reflecting optical components. A major 

limitation is imposed by the damage threshold of the optical components. 

We have also proposed a vacuum beat wave accelerator (VBWA) configuration 

which relies on the nonlinear ponderomotive forces associated with two 

laser beams of different frequencies. The mechanism behind the VBWA does 

not satisfy the assumptions of the Lawson-Woodward theorem and can result 

in substantial electron energy gains in vacuum. The VBWA has the further 

advantage that, by appropriately choosing the wavelengths, spot sizes, and 

focal points of the two lasers, the phase velocity v , of the beat wave can 

be adjusted. Tuning the phase velocity to a value v . < c allows for the 

possibility of accelerating electrons with relatively low injection 

energies. 
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